RISK CHARACTERIZATION AND DAM SAFETY MODIFICATIONS TO ADDRESS ACTIVE FAULT RUPTURE BENEATH AN EMBANKMENT DAM

ISABEL

DAM

David C. Serafini, P.E., G.E. Lead Engineer, SPD-DSPC

Keith I. Kelson, C.E.G. SPD-DSPC

Henri Mulder, P.E. Geotechnical Lead, SPD-DSPC

Association of State Dam Safety Officials 2016 Annual Meeting 13 September 2016

US Army Corps of Engineers BUILDING STRONG_®

Outline

- Overview: Isabella Dam Modification Project
- Overview: Seismic Source Characterization (fault rupture)
 - Site-specific paleoseismic data
 - Scenario-based fault displacements using empirical relationships
- Overview: Design of the (size and location) of filter and drain zones for the downstream buttress modification of the Auxiliary Dam

Main Dam

185 ft high
Zoned earth fill (almost homogeneous)

• Foundation primarily granitic bedrock

Constructed 1948-1953 Primary Purposes: Flood control (~ 74%); Irrigation (~21%); Non-Federal Hydropower (~5%) Reservoir Capacity = 568,100 ac ft

Auxiliary Dam

- 100 ft high
- Homogeneous silty sand
- Foundation = alluvial soils

and bedrock

Spillway

- Ungated spillway
- Ogee Weir

BUILDING STRONG_® and Taking Care of People!

Primary Issues (Potential Failure Modes) Isabella Dam Modification Study

Kern Canyon Fault Characterization

Data Needs (Fault Rupture PFM)

- Locations of Active Fault Strands
- Zone of Surface Deformation
- Amount of Surface Deformation
- Sense of Coseismic Slip
- Frequency of Coseismic
 Deformation

Kern Canyon Fault Characterization

- Starting from scratch: KCF previously uncharacterized (inactive)
- Comprehensive program of fault evaluation (2005 to 2010)
 - Geologic, geomorphic, seismologic, paleoseismologic, age-dating analyses
 - Integrated with geotechnical and geophysical data
- Active Fault
- 140 km long; four sections
- Multiple Holocene surface ruptures
- Return period ca. 3ka
- Maximum magnitude: M_w7.5

Potential Failure Mode: Fault Rupture Beneath Right Abutment

Kern Canyon Fault Rupture Summary:

- Normal (east-down) displacement
- Design fault rupture displacement = 6.8 ft
- Mean maximum displacement of 9.8 ft (unsegmented rupture scenario)

PFM #47 – Transverse Cracking Due to Fault Rupture

Kern Canyon Fault at Right Abutment

Dam Site Field Investigations

Objectives:

- Define Rupture Characteristics
 - Location, Width, Sense of Slip
 - Amount of Coseismic
- Develop Recurrence Information

Cross Section: trenches and shallow borings

Cross Section: Trench data, USACE (1948)

Cross Section: trench, USACE (1948)

Trench data, USACE (1948), URS (2008)

Four fault strands, slightly asymmetric basin

Active Deformation on KCF

Tectonic displacement in 150-ftwide zone

Two active fault strands, 50 ft apart; Secondary deformation between two primary strands

Overall displacement: East-down normal

2 datable surface ruptures <u>at Auxiliary Dam</u> in past 10,000 yr M6.5-M7.1. Average 1.1m offset

Estimated recurrence on Lake Isabella section is 700 to 3600 yr, Most Recent Event: 3,600 years ago

BUILDING STRONG_® and Taking Care of People!

Distribution of Slip Across the Fault Zone

Coseismic Rupture Estimation

Coseismic Rupture Estimation

Coseismic Rupture Estimation

Auxiliary Dam STA 65+00

Auxiliary Dam STA 58+00

Auxiliary Dam Right Abutment

Filter and drain is thickest between Sta 52+00 and 58+00 to accommodate deformation from faulting

Kern Canyon Fault Rupture Mitigation

- Design value for fault rupture (6.8 ft normal offset) based on maximum estimated displacement from sitespecific fault displacement
- Minimum and maximum fault rupture displacements from global empirical database
- To maintain filter compatibility, filter and drain layers designed to have same thickness over the fault zone area (2x design fault displacement)

 $7 \times 2 = 14$

BUILDING STRONG_® and Taking Care of People!

Questions

