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In Japan, the important
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Evaluation method for fault displacement by deterministic Method

(Earthquake generation layer)	
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(sediment)	

principal 
fault	

deformation	

Characterized	source	model	that	can	be	
reproduced	up	to	10	seconds	in	period.	

Simula)on	of		subsurface	rupture	
considering	terrain,	stratum	structure	
and	non-linear.		

Reproduc)on	of	earthquake	mo)on	
with	period	of	10	seconds	or	more	by	
Dynamic	rupture	simula)on.		
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Characterized Source Model: ChiChi

!  We	try	to	explain	observed	mo)on	with	a	simple	fault	geometry.	
!  We	set	ini)al	source	model	referring	to	slip	distribu)on	obtained	by	Sekiguchi	

and	Iwata	(2001).	
!  Referring	to	characterized	source	model	by	Kamae	and	Irikura	(2002)	and	

Ikeda	et	al.	(2004),	we	tune	up	parameters	of	strong	ground	mo)on	areas	
(SMGAs)	by	trial	and	error,	such	as	size,	loca)on,	rake	angle	and	rise	)me	to	
simulate	observed	velocity	ground	mo)ons	well.	

Ikeda	et	al.	(2004)	 Sekiguchi	and	Iwata	(2001)	
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Characterized Source Model: ChiChi

観測記録 合成波形(総和) 合成波形(SM G A 1)

合成波形(SM G A 2) 合成波形(SM G A 3) 合成波形(SM G A 4)

観測記録 合成波形(総和) 合成波形(SM G A 1) 合成波形(SM G A 2) 合成波形(SM G A 3) 合成波形(SM G A 4)

O bs. Syn.(all	SM GAs) Syn.(SM GA1a) Syn.(SM GA1b) Syn.(SM GA2) Syn.(SM GA3) Syn.(SM GA4)

O bs. Syn.(SM G A 1)

SMGA1a
SMGA1b
SMGA2
SMGA3
SMGA4

Epicenter	
Rupture	star)ng	
point	

Target	:	2.0	–	10	s	
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Characterized Source Model: Darfiled
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Characterized Source Model: Wave Fitting

ASP2 ASP1 

ASP3 
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Characterized Source Model: ChiChi
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Numerical Simulation: ChiChi

point	of	chelungpu	fault			

3D	calculate	area	

posi)on	of	2D	sec)onal	

TCU075	observa)on	point	

EW：abount32Km×NS：about8Km	

<Area	of	simula)on>	
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Numerical Simulation: ChiChi

Material	
ID	

S-wave	
Velosity(m/s)	

density	
(Kg/m3)	

Poisson’s	
raCo	

Shearing	rigidity	
(N/m2)	

11,		23	 1,550	 2,000	 0.3	 4.81e+9	

12,		22	 1,700	 2,050	 0.3	 5.92e+9	

14,		25	 1,550	 2,000	 0.3	 4.81e+9	

13	 2,500	 2,300	 0.3	 1.44e+10	

21	 2,500	 2,300	 0.3	 1.44e+10	

24	 2,500	 2,300	 0.3	 1.44e+10	

Young’s	
mod(N/m2)	

Poisson’s	
raCo	

cohesion	
(N/m2)	

φ	
(°)	

7.0e+9	 0.33	 3.92e+4	 1	

Table	4		ground	property	

cohesion	
(N/m2)	

φ	
(°)	

raCo	of	
aSer	failure	

1.50e+6	 30	 0.01	

Table	5			property	of	fault	plane	(Joint	element)	

Table	6			Judge	of	failure	(Drucker-Prager	type)	

Fig	7		Model	of	Underground	structure		and	computaConal	mesh	
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Numerical Simulation: ChiChi

【Linear	Analysis】	 【Consider		elas)c-plas)c		
model		of	ground】	

region	of	failure(red)	
observaCon	

Linear		Analysis	
of	ground	

elasCc-plasCc	
model	

X-disp	
hanging	 -1.5～-4m	 -1.33m	 -0.12m	

footwall	 0.97m	 1.07m	 1.20m	

Z-disp	
hanging	 	2～4m	 1.61m	 0.80m	

footwall	 -0.15m	 -0.12m	 -0.14m	

x-displacement	

shear	strain	

z-displacement	

Table	7			ComparaCve	list	of	displacement		

Inoue et al. near-fault displacement 2061/12/9 14 / 31



Numerical Simulation: ChiChi

mat1	 mat2	

8500m	

1018m	E.L.=-600m	

2250m	

Region	of	par)cle	method	
　X=10500～19000m	
　Z=-600～418m	
　par)cle	size	8m	

hanging	wall	footwall	

Region	of		FEM	

Region	of	par)cle	method	
　X=10500～19000m	
　Z=-600～418m	
　par)cle	size	8m	

density	[kg/
m3]	

Young’s	
modulus	[Pa]	

Poisson’s		
raCo	

cohesion	[Pa]	 φ	

mat1	 2050	 5.925E+09	 0.30	 1.5E+6	 30.0	

mat2	 2000	 4.805E+09	 0.30	 1.5E+6	 30.0	

Table	3		ground	property	
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Numerical Simulation: ChiChi

region	of		failure	

Max	Shear	Strain	 region	of	failure	

case1	
case1	

case2	
case2	

case3	
case3	
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Data for slip-distance relationship

Event Type Mw Refarence
2014Nagano R 6.2 Okada et al. (2015)
2008IwateMiyagi R 6.9 TODA et al. (2010)
1995Kobe S 6.9 AWATA and Mizuno (1998)
1945Mikawa R 6.7 Sugito and Okada (2004)
1943Tottori S 7.0 Kaneda and Okada (2002)
1930Kita Izu S 6.9 MATSUDA (1972)
1927Kita Tango S 7.1 OKADA and MATSUDA (1997)
1896Rikuu R 6.7 Matsuda et al. (1981)
1891Nobi S 7.4 MATSUDA (1974)
2005Kashmir R 7.6 Kaneda et al. (2008)
1999ChiChi R 7.4 Azuma et al. (2000)
1971San Fernando R 6.7 Kamb et al. (1971); U.S. Geological Survey (1971)
1986Marryat R 5.9(Ms) Bowman and Barlow (1991)
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2014 Nagano Eq.( Okada et al., 2015 )
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1971 San Fernando Eq.( Kamb et al., 1971; U.S. Geological Survey, 1971 )
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Principal Fault Slip-Distance Relation (Strike-Slip)
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Principal Fault Slip-Distance Relation (Reverse-Slip)
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Distributed (Reverse-Slip)

●

●●

3.0 2.5 2.0 1.5 1.0 0.5 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from principal fault (km)

D
/M

D

D MD = a ⋅ eb

●

●

●

●

●

●

●

●●

●
●●

●

● ●● ●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from principal fault (km)
D

/M
D

D MD = a ⋅ eb

Inoue et al. near-fault displacement 2061/12/9 22 / 31



Distributed (Strike-Slip)
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Distributed (Strike-Slip)

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

5 4 3 2 1 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from principal fault (km)

D
/M

D

D MD = a ⋅ eb

● ●
●

●

●

●
●

●

●●

●

●

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from principal fault (km)
D

/M
D

D MD = a ⋅ eb

Inoue et al. near-fault displacement 2061/12/9 24 / 31



Numerical Simulation Parametric Study

450(m)	
14
0(
m
)	

L=225(m)	
θ	=	30°,60°,90°	

Reference:	[1]H,SAOMOTO	&	M	YOSHIMI,DEM	SIMULATION	OF	GROUND	DEFORMATION	DUE	TO	REVERSE	FAULT:PARAMETRIC	STUDIES	USING	
DIFFERENT	ALLUVIUM	THICKNESS	AND	DIP	ANGLES,	(2015)	

Material		 density	
(Kg/m3)	

Poisson’s	
raCo	

Shearing	rigidity	
(N/m2)	

1	 2,000	 0.3	 4.80e+9	

cohesion	
(N/m2)	

φ	
(°)	

1.50e+6	 8	

Table	2			Judge	of	failure	(Drucker-Prager	type)	Table	1		ground	property	

<Model	size	and	Material	Property>	

mesh	size	:	1.0(m)	
node	:	127182	

element	:	63000	
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Numerical Simulation Parametric Study

shear	zone	destroyed	area	(red)	max	shear	strain	

θ=30°	 θ=30°(※)	

θ=60°	 θ=60°	

θ=90°	 θ=90°	

FEM(This	study)	 DEM	

※	In	the	case	θ=30°at	reference	[1],	calculate	on	L=335(m).	
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Numerical Simulation Parametric Study

θ=30°	

θ=42°	

330(m)	
289(m)	

371(m)	
[A1]	

[B1]	

[B2]	
[B3]	
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Concluding Remarks

We introduced the our framework to evaluate near-fault displacement based
on deterministic and probabilistic approaches.

■ Deterministic Approach
・Characterized Source Model: reproduce the observed waveforms
・Surface Displacement Simulation: the results depend on the boundary
condition and material property.

■ Probabilistic Approach
・Displacement data is limited, especially for distributed fault

■ For better understanding of fault displacement
・Comparison and combination of both approachs
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Thank you for your kind attention

Related publication from IAEA
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