ENGINEERING IMPLEMENTATION OF THE RESULTS OF A FAULT DISPLACEMENT HAZARDS ANALYSIS

Jonathan D. Bray, Ph.D., P.E., NAE

Faculty Chair in Earthquake Engineering Excellence University of California, Berkeley

Sponsored in part by the National Science Foundation & Geotechnical Extreme Events Reconnaisssance (GEER)

Structures Undamaged, Functional, or Life-Safe After Faulting

Hazards of Ground Movements

Consequences of Ground Movements

Tolerable Levels of Ground Movements

A. Conventional Construction: $\beta = 1/500$, $\Delta_t = 25$ mm

- B. Post-Tensioned Slab Residential: $\beta = 1/360$, $\Delta_t = 40$ mm
- C. Liquefaction-Induced Settlement: $\Delta_t = 100 \text{ mm}$

(with "structural mitigation" CGS SP-117A, Youd 1989)

D. Liquefaction-Induced Horz. Movement: $\Delta_t = 300 \text{ mm}$

(with "structural mitigation" CGS SP-117A, Youd 1989)

NOT $\Delta_t = 0 \text{ mm}$

Surface Fault Rupture Damage to Homes in South Napa EQ

Cracked garage slab

Documented 27 homes affected by surface rupture Average observed deformation: 100 to 125 mm

Key Observations:

- No life safety issue resulted from surface faulting
- Unreinforced concrete slabs cracked
- Reinforced slabs slid uniformly or tilted
- Structures on pier foundations more heavily damaged
- Seismically retrofit homes/new construction performed best

Pushed off foundation

Rupture through piers

Moorpark Development Project, California (Bray 2001)

GROUND DEFORMATION DESIGN CRITERIA FOR BUILDING AREAS

Moorpark Development – Surface Fault Rupture Evaluation (Bray 2001)

Primary Active Faults with > 100 mm of potential offset

Bending Moment Active Faults with < 40 mm of potential offset

RESULTS OF NUMERICAL ANALYSIS (Bray 2001)

CHARACTERIZING HAYWARD FAULT

AMEC Geomatrix (Wells , Swan, et al.)

UCB Seismic Review Committee(Bray, Sitar, Comartin, Moehle, et al.)

Forell/Elsesser Engineers, Inc. (Friedman, Vignos, et al.)

CHARACTERIZING HAYWARD FAULT Fault Rupture Design Guidance AMEC Geomatrix (Wells, Swan, et al.) **Primary**: SS RR S R 0.9 – 1.9 m H CALIFORNIA 0.3 – 0.6 m V F-3NE -2NN F-1NW F-6SE **Secondary: F-5SS** F-4SW < 0.3 m H **SAHPC (cleared)**

UCB Seismic Review Committee

Forell/Elsesser Engineers, Inc. (Friedman, Vignos, et al.)

Engineering Mitigation of Fault Displacement

UCB Seismic Review Committee (Bray, Sitar, Comartin, Moehle, et al.)

AMEC Geomatrix Forell/Elsesser Engineers, Inc. (French et al.) (Friedman, Vignos, et al.)

Modeling of the Effects of Surface Faulting

Scale Factor: +0.00

ODB: Job1_1B.odb Abaqus/Standard Version 6.8-3 Fri Sep 11-12:03:20 Pacific Daylight Time 2009

x

Step: Sixft Increment 6: Step Time = 1.000

Deformed Var: U Deformation Scale Factor: +3.000e+00

Fault -

Forell/Elsesser Engineers, Inc. (Friedman, Vignos, et al.)

Surface Rupture Characteristics Depend On:

- fault type
- fault geometry
- amount of fault displacement
- maturity of fault
- earth material over fault
- structure and its foundation

1992 Landers Earthquake

Lazarte, Bray & Johnson (1994)

Broad Area of Building Damage on Hanging Wall of Reverse Fault

Not on footwall

TABITO MIDDLE SCHOOL

M_w 6.6 Hamadoori Aftershock of 4/11/11: Shionohira Normal Fault Displacement

Laser survey of the brim of the pool (Konagai, Bray, Streig, & others)

1.25 m vertical displacement between ends of pool

CENTRIFUGE TEST OF FAULT RUPTURE WITH AND WITHOUT MAT FOUNDATION (Davies et al. 2007)

provided by Anastapolous & Gazetas

WEIGHT OF MAT FOUNDATION EFFECTS (Davies et al. 2007)

Light Load: q = 37 kPa

provided by Anastapolous & Gazetas

MODELING OF FAULT RUPTURE

Centrifuge Test: 60° Reverse Fault Uplift in Sand (Davies et al. 2007; Prototype Scale)

FLAC-2D / mod-UBCSAND Analysis: 60° Reverse Fault Uplift in Sand (Oettle & Bray 2013)

Importance of Failure Strain

(Bray et al. 1994) 50 **FEM** Analyses 40 Physical Model Tests Δ 30 20 10 0 20 5 10 15 0 Axial Failure Strain (in percent) 45 40 Deviatoric Stress (kPa) 35 30 25 20 15 10 5 PS Compression Loading 0 10% 0% 5% 15% 20% Engineering Shear Strain, y (%)

(Lazarte & Bray 1996)

Fault-Structure Interaction Analyses

(Oettle & Bray 2013)

Thicker mat foundation significantly reduces building damage

Mitigation with Thick Mat Foundation

Thicker mat foundation "shields" structure from ground deformation

Mat Thickness = 0.45 m

Mat Thickness = 1.2 m

Mat Foundation (Induces Rigid Body Building Movement)

Oettle and Bray (2013)

Engineered Fill (Diffuse Underlying Fault Movement)

Oettle and Bray (2013)

Fault Diversion (Shield / Protect Structure)

SURFACE FAULT RUPTURE ENGININEERING DESIGN

ENGINEEERING GEOLOGIST

- Identify and characterize faults
- Estimate amount of potential fault displacement

GEOTECHNICAL ENGINEER

- Construct ductile reinforced soil fills to spread out movement
- Use slip layer to isolate ground movements from foundation
- Place compressible materials adjacent to walls and utilities

STRUCTURAL ENGINEER

- Design strong, ductile foundations, with flexibility
- Avoid the use of piles
- Professionally responsible for life-safety of building occupants